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ABSTRACT:  Capturing and encoding human variability is an increasingly important issue in human behavior 
models (HBMs) for military simulations.  In this paper, we define variability, describe its importance in several 
military simulation applications, examine the sources of variability in human behavior, and outline an approach to 
variability that will allow us to explore approaches to low-cost, realistic variability in human behavior models.   
 
Capturing and encoding human variability is an 
increasingly important issue in human behavior models 
(HBMs) for military simulations. During the 
development of TacAir-Soar [1], a detailed model of 
expert human pilots flying tactical fixed-wing air 
missions, we faced contradictory requirements with 
respect to variability. Variability seemed at odds with 
validation requirements (how could the system be 
validated if it had any variability at all?) but yet 
necessary for realistic models (how could we possibly 
claim to model human behavior without variability?). 
For TacAir-Soar, we minimized the deliberate 
introduction of variability, mostly because it was 
sufficiently challenging to generate correct behavior. 
Significant variability did emerge in TacAir-Soar from 
the interaction between a complex environment (other 
computer and human controlled entities) and the 
complex knowledge encoded in TacAir-Soar; 
observers did not feel that the behavior was overly rote 
or predictable. Thus, we avoided modeling variability 
explicitly, which would have complicated validation, 
but realized adequate variability through rich 
interactions with the environment.  

We are currently exploring how to create HBMs that 
exhibit realistic variability in M&S systems, derived 
from our experiences in developing TacAir-Soar and 
the VIRTE MOUT adversaries. In this paper, we 
define variability, examine sources of variability in 
human behavior, and identify constraints and issues 
that arise when attempting to model these sources of 
variability in HBMs.  We introduce potential sources 
of variability in computer-based models of human 
behavior and describe how they map to the sources of 
variability in human behavior. We also describe a 
“strawman” proposal for architecturally supporting 
realistic variability.  We are implementing this 
proposal in order to explore these questions 
empirically. 
 
1. Behavior variability 
We define behavior variability as differences in 
observed behavior when entities (human or otherwise) 
are placed in essentially the same situations. Situations 
are defined both by the physical environment (such as 
the terrain, buildings, other entities, and 
communications with other entities) and the 
strategic/tactical environment (such as the mission, 
rules of engagement, and the command structure).  

 
For the last year, however, we have been developing 
computer-controlled adversaries for building-clearing 
combat training. In this urban combat (“MOUT”) 
application, realistic variability is a primary 
requirement because the total behavior space is 
narrower, the tactics are less prescribed, and trainees 
must not be able to easily predict and “game” opponent 
behaviors [2].  

 
Variability does not imply simple dichotomies such as 
correct/incorrect or expert/novice. In a given situation, 
there is often more than one behavior that is consistent 
with military doctrine, the observed behavior of 
military personnel, and the expected behavior of 
adversaries.  As illustrated in Figure 1, within the space 
of all correct or “good” behaviors, different HBMs (or  
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Figure 1  A notional view of behavior space 

 
the same HBM at a different time) can follow different 
paths through the behavior space. Although the 
challenge of developing a HBM that is consistent with 
expected human behavior can be overwhelming in its 
own right, variability introduces new dimensions for 
modeling.  In most typical HBM systems, models are 
able to generate only a very small fraction of the total 
behavior space and concentrate on reproducing models 
of correct human behavior.  Variability requires 
models that can generate behavior over much larger 
fractions of the total possible behavior space.  This 
increase includes not only optimal and average 
behaviors, but also possibly incorrect behaviors. 
 
Introducing variability in HBMs does not eliminate the 
possibility of generating deterministic behavior. 
However, to achieve deterministic behavior generation 
and variability requires that the generation of behavior 
must be conditional on details of the situation that are 
not available to the standard observer or participant. 
For example, an observer might see two situations as 
the same but resulting in different behavior, but, from 
the perspectives of the entity that generated the 
behaviors, the situations could be different. The 
differences can include both fine-grained details of the 

current state of the world, not apparent to a high-level 
observer, and/or differences in the internal state of the 
entity that would never be observable unless the entity 
decided to communicate them.  
 
Achieving realistic variability in performance does not 
in itself require the ability to generate many different 
options at each decision point. As our experience in 
TacAir-Soar confirms, small differences in individual 
decisions can lead to major differences in overall 
behavior.  In Figure 1, the behavior trace of Agent1 
includes a representation of the options not chosen at 
each decision point.  Most HBM systems do not model 
even as many options as are suggested in this notional 
diagram.  However, each time a different decision is 
made, it changes the situation, possibly leading to 
different decisions based on the changed situation. In 
Figure 1, Agents 1, 2 and 3, begin in the same state, 
but their paths through the behavior space are 
completely distinct, the result of choosing among 
different options at the start.   Thus, significant 
differences in behavior can arise from the 
accumulation of small differences in individual 
decisions over time.   Additionally, the dynamics of 



physical performance also introduce variability which 
needs to be captured in HBMs [3, 4].   
2. The importance of behavior variability 
in military simulations 
In general, military simulations involve populating 
simulated battlefields with simulated humans or 
human-controlled vehicles (tanks, planes, ships, etc), 
either for training or for the development and 
evaluation of new weapons systems and tactics. In this 
section, we discuss why expressing human variability 
is critical for these applications.  
 
TRAINING 
Human behavior modeling is usually used in training 
applications to populate the battlefield with opponents 
and teammates. Trainees can directly engage enemy 
computer forces, fight alongside computer-generated 
teammates, or command computer forces.  
 
Possibly the most important reason to include 
variability in HBMs for training is that it prepares the 
trainee for the variability inherent in human behavior 
in the real world. For example, when we discussed 
developing adversary force behaviors for MOUT with 
SMEs, we suggested creating the “best” adversarial 
behavior possible – the behavior that would be 
expected of the most highly trained opponent. This 
strategy would be comparable to the methodology we 
used for TacAir-Soar, where we encoded the specific 
tactics and operational procedures used by military 
pilots. The SMEs responded that it is critical to expose 
trainees to the breadth of skill levels in the opponent 
forces. Untrained forces may behave in ways that are 
non-optimal and even dangerous for themselves; 
however the trainees must be prepared to respond to 
such behavior with appropriate tactics, even if they 
would not use them against a highly trained opponent. 
Experts cannot stop and deliberate about an 
appropriate response; they must know it and execute it 
immediately.  
 
Variability in computer generated teammates or 
subordinates is also important because a trainee must 
learn to work with or command teammates who have 
different skill levels and learn to recognize and 
consider variations in subordinates. Attempting to 
command a heterogeneous fighting force can be very 
different from commanding a homogeneous one. 
 
Another reason for introducing greater variation in 
computer forces for training is that without it, trainees 
may attempt to “game” the situation by taking 
advantage of the predictability of the computer forces. 
Learning the characteristics of an opponent is an 
important skill to learn; however, the predictability of 
many current computer forces makes it far too easy to 
execute tactics that are effective against a predictable 

computer opponent, but would be extremely dangerous 
in the real world. A final reason for variation is that it 
can reinforce a trainee’s interest and motivation in 
simulation-based training by challenging the trainee 
with novel situations.  
 
DEVELOPMENT AND EVALUATION OF NEW WEAPONS 
AND TACTICS 
Just as in training, human behavior models help 
populate the virtual battlefield when simulation is used 
for the development and evaluation of new weapons 
and tactics. The evaluation of the effectiveness of new 
weapons systems and tactics would be incomplete if 
there was little or no variability in the computer 
generated forces (even if we can produce the behavior 
of average human participants). Testing new systems 
and tactics against a range of responses to a situation, 
often at the extremes, allows experimenters to learn not 
only their strengths, but also their limitations. A new 
tactic or weapon that works only with the average 
friendly soldier vs. the average enemy soldier may 
completely fail when used within the variability that 
exists across the capabilities and behavior of real 
forces.  
 
3. Types and sources of variability in 
human behavior 
The types and sources of human variability (see 

) can provide us with guidance and constraint for 
introducing variability in computer generated forces.  
A fundamental distinction in variability is whether 
observed variation refers to the behavior of an 
individual entity or the behavior among different 
entities. This section examines these two distinct types 
of variability and the factors that lead to variability for 
both types.  
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Figure 2 Types and sources of variability in human 
behavior 

ACROSS SUBJECT VARIABILITY 
Across-subject variability refers to a situation in which 
two different people do different things in essentially 
the same circumstance. For example, an expert soldier 
may fix on an individual target, shooting until the 
target is suppressed or disabled, while another, 
similarly experienced soldier will move from target to 
target, shooting a few rounds and then focusing on 
another target without necessarily disabling or 
suppressing the initial target. Moreover, an 
experienced soldier may execute a tactic that has been 
acquired through many hours of training, while a 
novice may be unable to execute the tactic skillfully or 
have no knowledge of it at all.  Across-subject 
variability is evident in Figure 1 by the different paths 
of the three agents in the behavior space. 
 
The fields of Psychology and Human Factors provide a 
wealth of data for the many reasons variability arises in 
different subjects. We break down the sources of 
variability into two classes: physical differences and 
mental differences (where “mental” is used very 
broadly). Examples of physical differences include 
perceptual abilities, level of fitness and health, and 
physical skill. Examples of mental differences include 
level of training, education, and intelligence, culture, 
social standing, religion, personality, memory capacity, 
and emotional state [5-7]. 
 
Many of the “mental” differences can be cast as 
differences in available knowledge. Consider the 
factors that influence target selection in urban combat. 
Henninger, Taylor, et al  [8] describe situations in 
which subject matter experts select and engage 
different targets in the same situation. Some experts 
based their decision solely on target proximity; others 
evaluated the immediate threat posed by potential 
targets (e.g., returning fire, facing in direction of firer). 
Others evaluated the longer-term threat of contacts, 
choosing targets holding weapons with the greatest 
firepower (e.g., those with semi-automatic rifles, 
grenades, and rocket-propelled grenades vs. those 
armed with rifles and pistols). In these cases, the 
experts drew on knowledge obtained from training, 
their own experiences, and their assessment of this 
particular situation to make sometimes different 
conclusions. 
 
Differences in target selection can also arise from 
physical differences, such as visual acuity. In the 
experiments, the SMEs made time-stressed decisions 
and then reviewed their decisions in an after-action 
review [8]. One of the subjects reported in this after-
action review that he had not seen that one of the 
targets held an assault weapon and would have chosen 

it over his proximity-based selection had he recognized 
the differences in firepower among the potential 
targets. In this case, a perceptual difference, rather than 
knowledge differences, led to variation in behavior. 
 
Some mental differences are somewhat difficult to 
distinguish from knowledge and physical differences, 
existing at or defining the boundary between “mind” 
and “body”. Differences in behavior arising from 
mental factors might be difficult for a subject to report, 
outside of direct cognitive control, yet not simply a 
physical response. Consider, for instance, the reactions 
of a well-trained soldier experiencing live enemy fire 
for the first time in comparison to a seasoned veteran. 
The emotional responses to this fire are likely to be 
quite different among the two soldiers and perhaps lead 
to observable differences in behavior (e.g., keeping a 
weapon at the ready position) for which both soldiers 
share similar knowledge. Cultural differences, which 
are acquired over a lifetime of conditioning and 
learning, are also important sources of variability for 
military applications.  
 
WITHIN SUBJECT VARIABILITY 
Within subject variability refers to a situation in which 
an individual takes different actions at different times 
in effectively the same situation. Perhaps in some cases 
an expert soldier engages the target in closest 
proximity while, in others, he engages a target facing 
his direction, even if it is further away than another. 
 
Once again, behavior differences can arise from either 
differences in mental or physical state. Within subject 
differences in mental state can result from a change in 
the entity’s available knowledge through learning. For 
example, if the first time an entity encounters an enemy 
platoon and expects them to have only small arms, the 
entity might choose one tactic for attack. However, 
after learning that the enemy has more powerful 
weapons, the entity will probably change its behavior, 
having learned to improve its evaluation of its best 
course of action though experience. Other example 
factors that can influence mental state are differences 
in the entity’s emotional state, level of alertness and 
motivation. 
 
Differences in physical state can also change behavior, 
influencing what actions the individual is able to 
execute, as well as affecting the mental state. For 
example, a well-trained but heavily fatigued combatant 
might be observed to shoot much less accurately than 
under normal conditions. In this case, the variability (in 
effect on the enemy) is due to the physical effects of 
fatigue. Of course, it is very difficult to separate the 
physical effects of fatigue (e.g., how heavy a weapon 
feels) from the mental effects (motivation to aim 
carefully, motivation to shoot at all).  There is also 



evidence that fine-grained motor behavior can fall into 
patterns of variable responses [9]. 
 
Of these two types of variability, across-subject 
variability is potentially more important for the 
majority of applications of human behavior models. 
Developing computational models that provide realistic 
variability will provide a heterogeneous environment 
in which every entity behaves somewhat differently. 
No longer would it be the case that developing a tactic 
that defeats one enemy would defeat them all.  
 
Within subject variability is less important merely 
because it is unlikely that a human user will have 
multiple interactions with the same entity. However, 
for extended interactions with the same entities, such 
as the adversary forces we are developing for MOUT 
training, within-subject variability is also important to 
avoid predictable actions that the trainee can game. 
 
4. Constraints and requirements for 
modeling variability 
 
4.1 Realistic, individual-level variability  
Although there are many advantages to variability in 
human behavior modeling, there are limitations and 
concerns that must be addressed. Most importantly, 
variability for its own sake is rarely desirable. Imagine 
a behavior system that randomly generated one of its 
possible actions at each step in its reasoning. These 
agents would exhibit variability in their own behavior 
and with respect to one another, and would not be 
predictable. But they also would lack coherence and 
salience in their actions with respect to (attributed) 
goals, and most probably, they would generate 
behavior inconsistent with human behavior. Using 
such agents for any purpose could easily be 
counterproductive. Rather than introduce arbitrary 
randomness, our goal is to understand the variation that 
exists in human behavior and to develop and employ 
mechanisms in agent systems that can produce human-
like variability in agent systems.  
 
Although it is unlikely that an application would 
approach arbitrary randomization as extremely as in 
this example, the injection of randomness and “noise” 
in HBMs can lead to similar problems.  Realistic 
variability requires realistic individual behavior that 
must be sustained over the course of a scenario.  For 
example, suppose that, across a population, two tactics 
appear equally likely in observed behavior.  A model 
that simply randomly chose to use one tactic vs. 
another for each encounter would reproduce the 
population mean, but might not reflect the actual 
behavior of individual humans.  It might be that 
individuals consistently choose one of the two options.  
This problem is comparable to the problem of creating 

cognitive models that reproduce population means but 
not the behavior of any individual subject [10].  
Injecting noise into option selection is not the right 
solution when the goal is to produce individual entity 
behavior that reflects the behavior of individual 
humans.   
 
Computational human behavior models should be able 
to produce both the population-level distributions and 
accurate individual level models. In addition to the fact 
that average case behavior may not reflect the actual 
behavior of any individual, a critical goal of training 
applications is to provide trainees opportunities to note 
and take advantage of patterns. In the situation outlined 
above, the trainee facing a random choice HBM would 
be missing an opportunity to observe a pattern that will 
occur in actual combat.  
 
4.2 Balancing variability and validation 
Behavior variability has the potential to increase the 
problems and complexity of behavior validation. The 
complexity of human behavior models already make 
them extremely difficult to validate. Introducing 
variability means that it is not sufficient to expose the 
model to each situation once and then evaluate it. 
Potentially, it must be exposed to the same situation 
multiple times.  Determining the required the number 
of exposures is an open question. Of course, one could 
argue that a requirement for validation is variation in 
behavior, so that the validation of a model that does not 
produce variability is really impossible. We have 
preliminary work that attempts to address this through 
automated comparisons of human and computer 
generated behavior [11]. 
 
4.3 Balancing variability and autonomy 
A third concern is that variability could make it more 
difficult to develop scenarios with specific purposes, 
such as training a specific tactic and exposing the 
training to specific behavior. The variability in 
behavior could make it difficult to predict what 
behavior the behavior model will generate, and thus, 
what the exact details of the scenario will be. This 
could most likely be easily controlled by damping the 
variability, but this exposes an important point about 
the use of behavior modeling in simulation. Many 
times, completely autonomous behavior is not 
required; instead it must be possible to have external 
input into the behavior of an agent to make sure that 
the behavior is appropriate for the goals of the 
scenario. The type of control is analogous to the 
director of a play that must change the plot 
dynamically in the face of the actions of non-scripted 
participants [12].  
 
4.4 Complexity in modeling sources of variability 



Variability in human behavior most often arises from 
complex interactions among the many mental and  
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Figure 3 Variability influences all aspects of HBM behavior generation 
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physical factors identified as sources of variability. 
What one is thinking of a situation effects emotional 
state, the effect of which can impact both the physical 
state and what one is thinking. The subtle and complex 
interactions of between cognition and just one of these 
factors is often the subject of research projects in their 
own right [13-15]. Understanding the influence of 
these factors on cognition is important research.  
However, if the goal is to produce realistic variation in 
individual entity behavior, rather than a computational 
explanation of some particular phenomenon, it may not 
be necessary to model the phenomena (and their 
interactions) explicitly.  
 
5. Computational models of variability 
To explore issues in computational models of 
variability, we introduce a simple model of behavior 
generation with perception, reasoning, and action 
components.   provides a notional view of such 
an agent.  An agent consists of its fixed processing 
substrate (agent architecture) and encodings of domain 
knowledge for particular tasks.  Agents receive input 

from some external task environment.  This input must 
be transformed to a representation that the agent can 
understand.  Internally, the process of perception is 
mediated by situation interpretation knowledge, 
allowing the external situation to be interpreted in 
terms of the current mission, goals, and rules of 
engagement, etc.  Reasoning is the process of 
generating, evaluating, and selecting goals and actions.  
Reasoning is influenced by the agent’s current 
situational assessment, its background knowledge, 
emotional state, and current physical capabilities.  The 
selections of goals lead to actions that are executed in 
the external environment.  
 
Variability can arise at each stage in this model.  
Differences in how the situation is perceived, 
background knowledge, emotional state, and current 
physical capabilities all can lead to differences in 
behavior.  These differences can arise from either 
mental processes (perceive, reason, act) or physical 
interaction components (transfer functions for input 
and output).  For example, differences in situational 
assessment can be arise from differences in physical 



ability such as visual acuity, and/or differences in 
knowledge available for interpretation (an agent might 
be able to see an enemy weapon but lack knowledge of 
its capabilities).  
 
The most straightforward path to creating across 
subject variability in observed behavior would be to 
create a collection of agents with different knowledge. 
In , knowledge plays a role in perception, 
reasoning, and action and it seems clear that different 
knowledge about and interpretations of a situation will 
lead to differences in human behavior. However, given 
that the cost of building a single agent is often viewed 
as prohibitive, the cost of building populations of 
agents with different knowledge would lead to 
significant increases in cost, making this option 
infeasible.  

Figure 3

 
An important factor in this increase in cost is that 
differences in knowledge leading to differences in 
behavior must be identified and encoded. Another 
approach to creating agents with different knowledge 
would be to allow them to specialize their knowledge 
through experience and learning. Although variability 
is not necessarily the goal, this approach is largely the 
one adopted by researchers in evolutionary 
computation.  However, the learning approach to 
variability, if not carefully managed, can lead to 
arbitrary variability.  The challenge is to identify and 
reinforce learning that leads to human-like variability 
in behavior. 
 
Increasingly, computational modelers are investigating 
the role of sub-cognitive mental and physical factors in 
decision making and behavior (e.g.,  [13-15]).  Such 
models have been used to show, among other things, 
that they can increase variability in behavior [16].  
Thus, they represent a potentially sound source for 
improving variability.  However, the drawback of these 
models is that they require mature computational 
accounts of the phenomenon being modeled, and, a 
priori, there is no guarantee that any individual method 
will provide a rich source of variability.  For example, 
a large number of integrated, architectural models of 
sub-cognitive phenomena might be necessary to 
achieve significant variability. 
 
Rather than modeling knowledge differences that lead 
to different choices or potential sources of variability, 
our current goal is to create mechanisms that support 
variability in decision making within the agent 
architecture and thus simulate some impacts of 
behavior moderators in terms of variability.  Our 
hypothesis is that, long-term, it will be less expensive 
to introduce factors that influence the decision making 
process that can be generalized over many applications 
rather than attempting to program (or have an agent 

learn) knowledge differences.  We propose to 
introduce variability parameters that can be used to 
generate realistic within-subject and across-subject 
variability, but without having to model the sources of 
variability explicitly.  This hypothesis assumes that 
there are behavior moderators in humans that lead to 
variability, even when the knowledge of human 
participants is (more or less) the same. 
 

6. Architectural support for variability in 
human behavior models 
We have begun to explore mechanisms and techniques 
at the level of the agent architecture and agent 
knowledge that will allow agents sharing the same 
knowledge base to exhibit increased variability with 
respect to the behavior of other agents.  The approach 
is a “strawman,” a simple implementation that will 
allow us to understand more completely the 
requirements and evaluation of variability in HBMs. 
 
6.1 Within-subject variability 
Because the MOUTBot is our target application for 
this work, we will illustrate our approach with 
examples from the MOUTBot.  MOUTBot knowledge 
derives, as in most HBM systems, from interviews with 
subject matter experts, but also in this case from our 
own analysis of the tactics of MOUT, and gaming 
experience in this domain.  The MOUTBots are 
implemented within the Soar architecture [17]. In Soar, 
knowledge is represented as a collection of operators 
that are proposed, compared, and selected based on the 
current situation.  Normally, our knowledge acquisition 
methodology would lead us to identify the best or good 
choices for a specific situation and to encode those 
choices. For example, one might only use a grenade at 
dynamic tactical junctures, or when faced with 
overwhelming firepower.  This kind of model reflects 
one expert (or at least highly trained) individual 
because the knowledge encoding is not focused on 
deliberately identifying and evaluating options, but 
rather recognizing that a particular operator is the most 
appropriate for a particular situation.  Using this 
approach, of course, means that across the agents in the 
simulation and across multiple runs of the simulation, 
the agents all exhibit similar behaviors. For example, 
they don't use grenades until tactically appropriate 
situations and make few tactically surprising decisions. 
In reality, soldiers make different choices and 
sometimes mistakes.  
 
Soar allows knowledge engineers to specify choices 
that are effectively equivalent. For example, for a room 
clearing scenario, an agent could simply choose 
randomly between turning right and turning left when 
entering a doorway.   At first glance, this equivalence 
mechanism alone appears to offer a potential 



mechanism for introducing within-subject variability. 
For example, if the rifle, pistol, and grenade weapon 
selections were equivalent to each other, then the agent 
would be much less predictable with respect to weapon 
choice.  However, because Soar simply chooses 
randomly among any equivalent options, the resulting 
variability would not be realistic. Few combatants will 
throw grenades capriciously or use pistols when 
automatic rifles are available. These decisions are 
much less likely than choosing to use the rifle.   
 
Choose a candidate() … 
 
If all choices are equivalent: 
1. Average selection values for each 

candidate 
2.     If candidate lacks a value, 

    add default value 
3. Choose candidate from normalized 

probability distribution 
Table 1. New equivalence selection algorithm 
 
In order to support non-uniform selection distributions, 
we have slightly extended Soar’s basic knowledge 
representation and modified the Soar decision process, 
as shown in Table 1, to support the new knowledge 
representation.  Knowledge for proposing and selecting 
operators can now include a numeric value when 
indicating equivalent choices. We are still evaluating 
the semantics of this change but, initially, we are 
treating it as a probability for a particular candidate.  
When the options available are all equivalent, the 
values for each option are averaged (line 1) and then a 
random choice made from the normalized probability 
distribution of the averaged values (line 3).  For 
compatibility with existing Soar systems, we include a 
default value for any options that lack the additional 
value (line 2).  The result is that Soar will continue to 
choose from a uniform probability distribution when 
all options have no selection values. 
 
Like all Soar knowledge, the rules comprising the 
selection knowledge for any option are context 
sensitive.  Thus, there may be any number of rules that 
express values for an option.  Initially, we have 
decided to average these values (line 1).  However, 
there are many potential choices for the representation 
of values and the function computed by the 
architecture. For example, selection could be based on 
sum rather than average of values for a candidate. Or 
values could be both negative and positive.  We will be 
exploring the trade-offs of these possibilities but for 
now we assume values are positive integers between 0 
and 100.  
 
Another design issue is the persistence of the selection.  
If the agent reconsidered selections whenever the 
active selection probabilities change, its behavior 

might appear “neurotic,” in that it might frequently 
change its previous decisions (e.g., switch weapons to 
rifle, then to pistol; then to rifle, etc.). For now we 
have chosen to assume that a decision, once made, will 
not be re-decided due only to a change in the asserted 
selection values. Therefore, if the selection probability 
of the pistol option increases, some additional factor 
(perhaps switching targets or moving to a new 
location) will be necessary before the agent would 
consider changing its current weapon. 
 
The new mechanism requires a broader knowledge 
base than would be necessary to create realistic 
behavior. When variability is desired, the knowledge 
engineer must identify a range of options rather than 
one. Consider the target selection example. In the 
MOUTBots, target selection is based on proximity, 
which is a valid, realistic algorithm for selecting 
targets. We will now want to encode multiple target 
selection strategies and define simple probability 
distributions among these different strategies. In the 
long-term, agent development may focus on much 
more comprehensive efforts to describe and codify 
behaviors across many classes of subjects. 
 
6.2 Across-subject variability 
The selection values and equivalence selection 
mechanism are only a first step in supporting 
variability. Selection values represent probability 
distributions for an individual’s options, not for the 
option selections across the population.  Another 
mechanism is needed to introduce variability across 
instances of the model. 
 
We have not yet implemented this component of our 
approach but we have developed a preliminary design.  
Each time an agent is created, the architecture will 
create some number of fixed but randomly determined 
values, that agent’s “variability profile.”  These values 
notionally represent fixed aspects of the agent’s mental 
and physical state.  For example, one value might 
represent “level of training” and another “susceptibility 
to arousal.”  At present, we are not making a 
commitment to the meaning of particular values.   
 
The variability profile will be used in conjunction with 
the selection values.  The computation of the average 
selection value (line 1 in Table 1) will be modified as a 
function of the variability profile.  Initially, we can 
structure agent knowledge to compute any 
modification although, long term, the moderation 
functions will be moved to the architecture.   
 
The result of this addition will be that, for any agent, 
the selection values for options will be constant 
(meaning that an individual agent will perform 
consistently over the course of a situation) but that the 



run-time selection values for different agents will be 
different from one another, although the agents share 
the same knowledge bases.  Thus, individual agents 
will generate behavior that allows the recognition of 
any patterns in its behavior, while supporting the 
possibility of a number of different patterns across the 
agents. 
 
7. Test and evaluation of computational 
models of variability 
We have examined sources of variation in humans and 
a simple approach to realizing greater variation in 
decision making. However, at this point, we can not 
claim that this design for variability in decision making 
will provide human-like decision making. This is an 
empirical question and will require both data on human 
variability as well as experimentation to determine how 
it provides/fail to provide human-like variability.   
 
One reason for proposing this simple approach is that it 
provides us a tool to begin to evaluate computational 
approaches to variability.  Building models that 
reproduce both individual subject behavior and an 
aggregate mean is a difficult problem, even for the 
more empirically oriented models of cognitive science 
[10].  Implementing the initial variability profile 
approach will allow us to begin to explore and to 
address the problems of evaluation and validation of 
HBMs with variability and to assess how readily we 
can realize realistic variability without having to 
encode knowledge differences or develop sophisticated 
models of non-cognitive moderators. 
 
8. Conclusions 
We have argued that variability is a critical issue for 
human behavior modeling in military simulations and 
that the means of achieving variability is not as 
important as the result in these applications. Thus, we 
are proposing normative rather descriptive models to 
introduce variability in HBMs. The variability profile 
approach may not map onto any human process but 
will allow us to explore how to achieve human-like 
variability in HBMs, to what extent the total space of 
human variation can be achieved without introducing 
distinct agent knowledge bases, and, importantly, how 
to quantify and evaluate agent variability in 
comparison to human variability. 
 
A key contribution of this analysis is highlighting the 
roles of variability in individual and aggregate 
behavior.  Creating models that reproduce the 
variability of human behavior is not, in itself, 
sufficient.  Rather, HBMs should generate behavior 
patterns consistent with individual human behavior 
while also, in the aggregate, reproducing the broad 
spectrum of human behavior. 
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